
Makalah IF2211 Strategi Algoritma, Semester II Tahun 2020/2021

Solving KenKen puzzle using Brute Force

Kahfi Soobhan Zulkifli 13519012

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jalan Ganesha 10 Bandung

E-mail (gmail): 13519012@std.stei.itb.ac.id

Abstract—KenKen, also known as Mathdoku or Calcudoku,

is a number puzzle game that is like sudoku but has additional

challenges to it. The player must also use its arithmetic skills

when solving this puzzle, different to sudoku where it does not

require arithmetic skills. Like Sudoku, each row and column of

the grid can only have one unique digit, and each cage within the

grid must fulfill its its given rule, defined by an operator

(addition, subtraction, multiplication, and division) and a final

number. This paper presents a brute force algorithmic approach.

Keywords—kenken; algorithm; brute; force; strategy

I. KENKEN PUZZLE

KenKen (Mathdoku or Calculdoku) was created in 2004 by
Tetsuya Miyamoto, a Japanese teacher who wanted to train the
math and logic skills of his students in an interactive and
challenging method. This brainteaser game quickly spread
throughout the world, currently one of the most famous online
puzzle ever played on the Internet. It then turned into a
worldwide sensation after the appearance of online and mobile
versions, especially appealing to lovers of number games such
as Sudoku and Kakuro[1].

The game consists of a grid with size nxn, n ranging from 3
to 9 and cages which consist of many grids that has a specified
rule. The puzzle is completed when each row and each column
consists all of the digits ranging from 1 to n and the numbers in
each cage satisfies the rule applied to it. The rule consists of an
operator and a target number. Mathdoku allows five different
operators:

1. +, addition (n-ary)

2. -, subtraction (binary)

3. ×, multiplication (n-ary)

4. ÷, division (binary)

5. =, equality (unary, symbol usually not shown, just the
number given)

To solve a KenKen puzzle, there are two challenges in
which must be thought carefully by the player: which numbers
to put in a cage, and which order to put them in since it affects
other rows and columns. The most obvious strategy is to use
trial and error with some added intuition that is subjective to
the player. The easiest start would be to fill in cages that
consist of one grid because it is obvious the number required
by the grid since there is only one operator that can be used in a

one-grid cage which is the '='unary operator. For example, in
the puzzle from Fig 1.1, the number 3 is the target number
required at the square at the first row since the rule written is
(=)3. After that, we can continue to solve more cages, starting
by small cages progressing to bigger ones, or by using trial and
error. For example, shown by the cage with the rule '24x', we
can clearly state that the only numbers that satisfy this rule is 4
and 6 from the set of numbers {1, 2, 3, 4, 5, 6}. The question
is, in what order should we put these two numbers inside the
cage.[5]

Fig. 1. Kenken Puzzle

From this, we can start using trial and error with some
added knowledge gained from the previous findings, and this
process repeats until all the grids are filled in with numbers. As
the difficulty level progresses, the next move cannot be
predicted easily. Sometimes the player is forced to guess a
number if the cage can be filled with any combination of
numbers given in the set, and then 'backtrack' to the point
where it was uncertain. Other strategies could be by using
additional heuritics such as size of cage or number of possible
'answers' in a cage.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2020/2021

Brute force:

c: candidate solution

P: set of candidates

sol: solution candidate

c ← first(P)

while c ≠ sol do

 if isValid(c) then

 output(c)

 c ← next(P)

II. BRUTE FORCE ALGORITHM

Brute force algorithm is a straightforward approach in
solving a problem. This is usually based on the problem
statement itself and the concepts that are involved within the
problem. This algorithm solves a problem in the most obvious
way and easy to be implemented.[2]

This algorithm is not intelligent and inefficient, since it
requires a lot of steps in solving a problem. Sometimes this
algorithm is also called the naive algorithm since it does not
rely on the "brain", more on the "power." [3]

In cryptography, attackers normally use brute force attacks
where they try every combination possible in guessing a user's
password. This may take years depending on the strength of the
password and how intelligent the the attacks are, usually by
guessing whole dictionary words then moving on to random
generated passwords. [4]

Brute force algorithms are used for small-scale problems
since these problems are considered simple and easy to be
solved. They are also used as a reference for more efficient
algorithms.

Despite the algorithm's inefficiency, this algorithm can
solve any problem since it searches for the solution. There are
problems where it is impossible to use algorithms other than
brute force, for instance finding the biggest number in an array.
[6]

Here is the pseudocode for the global brute force algorithm.

III. IMPLEMENTATION OF BRUTE FORCE ALGORITHM IN KENKEN

PUZZLE

For this problem, we start off by considering the board of
the kenken puzzle as a matrix with size of NxN where N is the
number of the grids. This means that the candidate solution
should be in the form of a matrix, and the candidates are the
result of a permutation generator. The permutation generator
starts off by creating a base tuple starting from 1 to the size of
the permutations. After that, we need to count the maximum
number of iterations required in creating the list of candidates.
Next, using an array, we start off by looping through the range
from the size given until the last number. During this loop, we
continuously update the indices by swapping the i-th one with
the j-th one from the right from the cycles array (in the
program, it is called 'perulangan'). If one of the elements in this
array is 0, then it is handled differently, by placing the i-th item
at the end, which shifts all the other elements to the front of the
array. From here we get the candidates and the order in which
these candidates must be placed into the board.

This algorithm guarantees that each row is already unique,
the real task is making sure that each column in the board has
unique numbers as well. To do this, we use a checkUnique
function where for every column, the elements are stored in a
set so that there are no duplicate values, and then the lenght of
the set is checked so that it is the same as the length of the
column.

Next, the algorithm ensures that the solution already
satisfies the rules given by the player. This starts off by the
player creating the rules and the algorithm stores it in a
dictionary where the key is the number of the cage and the
value of the key is the given rule. The locations of the cages are
also stored in a cagePos array, so that it is easier to check
whether the solution provided already satisfies the rules.

The checkCage algorithm starts off by looping through all
of the cages and its respective operators. From here, the
algorithm branches off according to the operator it detects.

"+": Sums all of the numbers provided in the board and
ensures whether it is the same or different to the target number.

"-": Computes the difference between two numbers and
checks whether it is equal to the target number.

"x": All the numbers in the cells given are multiplied and
the result is compared to the target number.

"/": Divides the two numbers provided in the board and the
result is compared to the target number.

Regarding the input of the program, the user types in the
size of the board, the number of cages and the locations of the
cages in the board. After that, the user types in the rules of the
board.

Here is the code of the program.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2020/2021

##Main.py

from engine import *

from mathdoku import *

from math import *

from itertools import *

grid, rules_dict, board, cagePos, N, NCages = start()

brutes = list(perms(N)) #engine

order = list(permutations(range(len(brutes)), N))
#itertools

solved = False

import time

start_program_time = time.time()

index = 0

while not solved and index < len(order):

 ordering = order[index]

 i = 0

 for rowindex in range(N):

 board[rowindex] = brutes[ordering[i]]

 i = i+1

 solved = checkUnique(N, board) and
checkCage(NCages, board, rules_dict, cagePos)

 index += 1

for row in board:

 print(row)

print(str(time.time() - start_program_time)+" seconds")

##Mathdoku.py

def start():

 N = int(input("NxN: "))

 NCages = int(input("Number of cages: "))

 grid = []

 for i in range(N):

 nums = input().split(' ')

 nums = [int(x) for x in nums]

 grid.append(nums)

 rules = input().split(' ')

 if (len(rules) == NCages):

 rules_dict = {}

 i = 1

 for rule in rules:

 rules_dict.update({i : rule})

 i += 1

 cagePos = [[] for i in range (NCages)]

 for i in range(N):

 for j in range(N):

 index = grid[i][j]

 cagePos[index-1].append((i,j))

 board = [[0 for j in range(N)] for i in range(N)]

 return grid, rules_dict, board, cagePos, N, NCages

def checkUnique(N, board):

 for col in range(N):

 a = []

 for row in range(N):

 a.append(board[row][col])

 col_length = len(set(a))

 if col_length != N:

 return False

 return True

def checkCage(NCages: int, board, rules_dict: dict,
cagePos) -> bool:

 for cageNum in range(NCages):

 if (rules_dict[cageNum+1][0] == "+"):

 total = 0

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2020/2021

##Engine.py

def perms(size):

 dasar = tuple(range(1, size+1))

 length = size

 maxnumberofiter = 0

 for i in range(1,size+1):

 maxnumberofiter *= i

 arrayofnum = []

 for i in range(length):

 arrayofnum.append(i)

 perulangan = []

 for i in range(length, length-size, -1):

 perulangan.append(i)

 yield list(dasar[i] for i in arrayofnum[:size])

 count = 0

 while True or count <= maxnumberofiter:

 for i in range(size-1, -1, -1):

 perulangan[i] -= 1

 count += 1

 if perulangan[i] == 0:

 arrayofnum[i:]=arrayofnum[i+1:]+arrayofnum[i:i+1]

 perulangan[i] = length - i

 else:

 j = perulangan[i]

 swap(arrayofnum, i, -j)

 yield list(dasar[i] for i in arrayofnum[:size])

 break

 else:

 return

def swap(arr, i, j):

 temp = arr[i]

 arr[i] = arr[j]

 arr[j] = temp

 return

##Mathdoku.py

def checkCage(NCages: int, board, rules_dict: dict,
cagePos)

 for cageNum in range(NCages):

 if (rules_dict[cageNum+1][0] == "+"):

 total = 0

 for loc in cagePos[cageNum]:

 total += board[loc[0]][loc[1]]

 if (total != int(rules_dict[cageNum+1][1:])):

 return False

 break

 elif (rules_dict[cageNum+1][0]=="-"):

 loc1 = cagePos[cageNum][0]

 loc2 = cagePos[cageNum][1]

 num1 = board[loc1[0]][loc1[1]]

 num2 = board[loc2[0]][loc2[1]]

if(abs(num1-num2)!=int(rules_dict[cageNum+1][1:])):

 return False

 break

 elif (rules_dict[cageNum+1][0]=="x"):

 total = 1

 for loc in cagePos[cageNum]:

 total *= board[loc[0]][loc[1]]

 if total != int(rules_dict[cageNum+1][1:]):

 return False

 break

 elif (rules_dict[cageNum+1][0]=="/"):

 loc1 = cagePos[cageNum][0]

 loc2 = cagePos[cageNum][1]

 num1 = board[loc1[0]][loc1[1]]

 num2 = board[loc2[0]][loc2[1]]

 if (num1 > num2):

 if(num1/num2!=int(rules_dict[cageNum+1][1:]):

 return False

 break

 else:

 if num2/num1!=int(rules_dict[cageNum+1][1:]):

 return False

 break

 elif (rules_dict[cageNum+1][0]=="="):

 loc = cagePos[cageNum][0]

 if board[loc[0]][loc[1]] !=
int(rules_dict[cageNum+1][1:]):

 return False

 break

 return True

.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2020/2021

IV. TESTING

We use two test cases, one with size 3x3 and the other size
4x4. Here are the results.

Fig. 2. Test Case 3x3

Fig. 3. Test Case 4x4

V. ANALYSIS

Based on the algorithm and testing, this algorithm cannot
accept kenken puzzles with sizes of 5x5 or more due to the
algorithm’s inefficiency when handling large inputs. This is
proven by the fact that the complexity of this algorithm is O(n!)
since the length of the order list in main.py has length n!.

Furthermore, this is proven by the fact that the runtime of
Fig. 3 is around 375% longer than the runtime of Fig 2. This
indicates that a slight increase in the size of the grid causes a
more significant increase in the time complexity, thus proving
the fact that the algorithm has a time complexity of O(n!).

VI. CONCLUSION

In conclusion, the Kenken puzzle is a challenging problem
that was created by a Japanese teacher and then became more
popular around the world. This puzzle can be solved by many
algorithms, one of which is brute force algorithm. However,
the grid size of the puzzle cannot exceed 4x4. This is due to the
inefficiency of the algorithm with a time complexity of O(n!)
which is one of the most inefficient algorithms. We
recommend using backtracking algorithm for larger grids, since
it is clearly more efficient than brute force algorithm.[2]

VIDEO LINK AT YOUTUBE

https://youtu.be/hq3BnFQssDE

ACKNOWLEDGMENT

Special thanks to my lecturer Dr. Ir. Rila Mandala, M.Eng.
for guiding me and his class, K1 during this semester. Also to
the other lecturers such as Dr.Ir. Rinaldi Munir, S.T., Dr. Nur
Ulfa Maulidevi, S.T., M.Sc. and Prof. Dwi Hendratmo W.,
Ph.D. for providing us the lecture materials in videos and in
powerpoint slides. Also the laboratory assistants of IF2211
Algorithm Strategies who have challenged us with their small
and big projects over the course of this semester. Finally to my
fellow classmates who have struggled together during these
hard times especially during this pandemic.

REFERENCES

[1] KenKen Puzzle Offical Site. http://www.kenkenpuzzle.com/ [Accessed:
May 11th 2021]

[2] Munir, Rinaldi. Diktat Kuliah IF2211 Strategi Algoritma. Bandung:
Teknik Informatika Institut Teknologi Bandung, 2009.

[3] FreeCodeCamp. https://www.freecodecamp.org/news/brute-force-
algorithms-explained/ [Accessed: May 11th 2021]

[4] Blocking Brute Force Attacks
https://web.archive.org/web/20161203020306/http://www.cs.virginia.ed
u/~csadmin/gen_support/brute_force.php [Accessed: May 11th 2021]

[5] Fahda. Asanilta, “KenKen Puzzle Solver using Backtracking
Algorithm,” Bandung: Teknik Informatika Institut Teknologi Bandung,
2015

[6] Levitin, Anathy. Introduction to The Design and Analysis of Algorithms
3rd Edition. United States of America: Pearson, 2012

STATEMENT

I hereby declare that this paper is my own work and not a

copy, translation, nor plagiarism of somebody else’s work.

elif (rules_dict[cageNum+1][0]=="="):

 loc = cagePos[cageNum][0]

 if board[loc[0]][loc[1]] !=

int(rules_dict[cageNum+1][1:]):

 return False

 break

 return True

https://youtu.be/hq3BnFQssDE
http://www.kenkenpuzzle.com/
https://www.freecodecamp.org/news/brute-force-algorithms-explained/
https://www.freecodecamp.org/news/brute-force-algorithms-explained/
https://web.archive.org/web/20161203020306/http:/www.cs.virginia.edu/~csadmin/gen_support/brute_force.php
https://web.archive.org/web/20161203020306/http:/www.cs.virginia.edu/~csadmin/gen_support/brute_force.php

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2020/2021

Bandung, May 11th 2021

Kahfi Soobhan Zulkifl

